NASA SBIR/STTR Technologies S3.04-9478 - High Duty Cycle, Extended Operation Constant Volume Combustion Engine ## PI: Roberto Di Salvo Streamline Automation, LLC - Huntsville, AL #### Identification and Significance of Innovation - * NASA's Science Mission Directorate is chartered with answering the fundamental questions requiring the view from and into space. - * Technologies being sought in propulsion include, precision landing, hazard avoidance, in-space rendezvous, and ascent/decent vehicle propulsion. - * This adjustment of mission focus will require propulsion systems that can operate under more demanding conditions, and provide greater flexibility. - * During Phase I we hot fire tested a constant volume (CV) combustion engine and demonstrated the feasibility of this engine cycle. - * The CV engine will provide: - * Significant weight reduction through lightweight and low pressure fuel and oxidizer storage. - * System simplification through the elimination of pumps. - * Improved safety through the use of non-hypergolic fuels. - * Reduced costs in the system components and ground servicing. Constant volume combustion engine testing Note shock diamonds in the plume. #### Estimated TRL at beginning and end of contract: (Begin: 4 End: 6) #### Technical Objectives and Work Plan #### Technical Objectives: - * Increased cycle repetition rate (greater that 10 Hz) - * Increased chamber pressure (over 1000 psi) - * Demonstrate thrust modulation through the use of pulse-width modulation techniques - * Demonstrate the reliability of critical CV engine components to sustained thermal and mechanical operating stresses - * Further develop the scaling/similarity relationships for engine design purposes - * Develop sufficient datasets for performance and mission planning purposes #### Work Plan: - * Upgrade of the CV Engine Testbed Incorporate aerospace grade valves and actuators to increase cycle repetition rate. - * Performance Mapping of the Upgraded Prototype Map the engine performance to determine ISP and thrust coefficient, among others. - * Definition of Phase II CV Engine Requirements/Design Parameters Define engine requirements based on notional NASA missions. - * Detailed Modeling and Engineering Analysis Perform detailed thermal, flow, and stress analysis on the engine. - * Develop and Implement More Sophisticated PLC Controller Implement closed-loop control and on-board diagnostics. - * Scaling/Similarity Study Perform a scaling analysis to estimate full-scale engine ### **NASA Applications** - * Orbital maneuvering and station keeping systems for NASA satellites and probes - * Ascent stage propulsion for sample return missions (Mars and asteroid) - * Suitable for any application where there is a need for a propulsion system that needs: - * A deeply throttable engine, - * A pulsed mode operation engine, - * An engine that will experience cold soak without requiring propellant heating, or - * An alternative to hypergolic propellants. #### Non-NASA Applications - * DACS systems on Kinetic Kill Vehicles (KKVs) - * Adaptation for commercial satellites using hypergolic propellants for orbital maneuvering and station keeping - * Alternative to hypergolic bipropellant thrusters Firm Contacts Alton Reich Streamline Automation, LLC 3100 Fresh Way Southwest Huntsville, AL, 35805-3637 PHONE: (256) 713-1220 FAX: (256) 713-1225